skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bonan, David_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Traditional feedback analyses, which assume that individual climate feedback mechanisms act independently and add linearly, suggest that clouds do not contribute to Arctic amplification. However, feedback locking experiments, in which the cloud feedback is disabled, suggest that clouds, particularly outside of the Arctic, do contribute to Arctic amplification. Here, we reconcile these two perspectives by introducing a framework that quantifies the interactions between radiative feedbacks, radiative forcing, ocean heat uptake, and atmospheric heat transport. We show that including the cloud feedback in a comprehensive climate model can result in Arctic amplification because of interactions with other radiative feedbacks. The surface temperature change associated with including the cloud feedback is amplified in the Arctic by the surface-albedo, Planck, and lapse-rate feedbacks. A moist energy balance model with a locked cloud feedback exhibits similar behavior as the comprehensive climate model with a disabled cloud feedback and further indicates that the mid-latitude cloud feedback contributes to Arctic amplification via feedback interactions. Feedback locking in the moist energy balance model also suggests that the mid-latitude cloud feedback contributes substantially to the intermodel spread in Arctic amplification across comprehensive climate models. These results imply that constraining the mid-latitude cloud feedback will greatly reduce the intermodel spread in Arctic amplification. Furthermore, these results highlight a previously unrecognized non-local pathway for Arctic amplification. 
    more » « less
  2. Abstract Global warming is expected to cause significant changes in the pattern of precipitation minus evaporation (P−E), which represents the net flux of water from the atmosphere to the surface or, equivalently, the convergence of moisture transport within the atmosphere. In most global climate model simulations, the pattern ofP−Echange resembles an amplification of the historical pattern—a tendency known as “wet gets wetter, dry gets drier.” However, models also predict significant departures from this approximation that are not well understood. Here, we introduce a new method of decomposing the pattern ofP−Echange into contributions from various dynamic and thermodynamic mechanisms and use it to investigate the response ofP−Eto global warming within the CESM1 Large Ensemble. In contrast to previous decompositions ofP−Echange, ours incorporates changes not only in the monthly means of atmospheric winds and moisture, but also in their temporal variability, allowing us to isolate the hydrologic impacts of changes in the mean circulation, transient eddies, relative humidity, and the spatial and temporal distributions of temperature. In general, we find that changes in the mean circulation primarily control theP−Eresponse in the tropics, while temperature changes dominate at higher latitudes. Although the relative importance of specific mechanisms varies by region, at the global scale departures from the wet-gets-wetter approximation over land are primarily due to changes in the temperature lapse rate, while changes in the mean circulation, relative humidity, and horizontal temperature gradients play a secondary role. 
    more » « less
  3. Abstract The influence of climate feedbacks on regional hydrological changes under warming is poorly understood. Here, a moist energy balance model (MEBM) with a Hadley Cell parameterization is used to isolate the influence of climate feedbacks on changes in zonal‐mean precipitation‐minus‐evaporation (P − E) under greenhouse‐gas forcing. It is shown that cloud feedbacks act to narrow bands of tropicalP − Eand increaseP − Ein the deep tropics. The surface‐albedo feedback shifts the location of maximum tropicalP − Eand increasesP − Ein the polar regions. The intermodel spread in theP − Echanges associated with feedbacks arises mainly from cloud feedbacks, with the lapse‐rate and surface‐albedo feedbacks playing important roles in the polar regions. TheP − Echange associated with cloud feedback locking in the MEBM is similar to that of a climate model with inactive cloud feedbacks. This work highlights the unique role that climate feedbacks play in causing deviations from the “wet‐gets‐wetter, dry‐gets‐drier” paradigm. 
    more » « less